геометрия 8

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО КУРСА "ГЕОМЕТРИЯ"
Рабочая программа по учебному курсу "Геометрия" для обучающихся 8 классов разработана на
основе Федерального государственного образовательного стандарта основного общего образования с
учётом и современных мировых требований, предъявляемых к математическому образованию, и
традиций российского образования, которые обеспечивают овладение ключевыми компетенциями,
составляющими основу для непрерывного образования и саморазвития, а также целостность
общекультурного, личностного и познавательного развития обучающихся. В программе учтены идеи
и положения Концепции развития математического образования в Российской Федерации. В эпоху
цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным
современным человеком без базовой математической подготовки. Уже в школе математика служит
опорным предметом для изучения смежных дисциплин, а после школы реальной необходимостью
становится непрерывное образование, что требует полноценной базовой общеобразовательной
подготовки, в том числе и математической.
Это обусловлено тем, что в наши дни растёт число профессий, связанных с непосредственным
применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в
гуманитарных сферах. Таким образом, круг школьников, для которых математика может стать
значимым предметом, расширяется.
Практическая полезность математики обусловлена тем, что её предметом являются
фундаментальные структуры нашего мира: пространственные формы и количественные отношения от
простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для
развития научных и прикладных идей. Без конкретных математических знаний затруднено понимание
принципов устройства и использования современной техники, восприятие и интерпретация
разнообразной социальной, экономической, политической информации, малоэффективна
повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять
расчёты и составлять алгоритмы, находить и применять формулы, владеть практическими приёмами
геометрических измерений и построений, читать информацию, представленную в виде таблиц,
диаграмм и графиков, жить в условиях неопределённости и понимать вероятностный характер
случайных событий.
Одновременно с расширением сфер применения математики в современном обществе всё более
важным становится математический стиль мышления, проявляющийся в определённых умственных
навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека
естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и
синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических
умозаключений, правила их конструирования раскрывают механизм логических построений,
способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым
развивают логическое мышление. Ведущая роль принадлежит математике и в формировании
алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам,
совершенствовать известные и конструировать новые. В процессе решения задач — основой учебной
деятельности на уроках математики — развиваются также творческая и прикладная стороны
мышления.
Обучение математике даёт возможность развивать у обучающихся точную, рациональную и
информативную речь, умение отбирать наиболее подходящие языковые, символические, графические
средства для выражения суждений и наглядного их представления.
Необходимым компонентом общей культуры в современном толковании является общее знакомство

с методами познания действительности, представление о предмете и методах математики, их отличий
от методов других естественных и гуманитарных наук, об особенностях применения математики для
решения научных и прикладных задач. Таким образом, математическое образование вносит свой
вклад в формирование общей культуры человека.
Изучение математики также способствует эстетическому воспитанию человека, пониманию
красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению
идеи симметрии.
ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА "ГЕОМЕТРИЯ"
«Математику уже затем учить надо, что она ум в порядок приводит», — писал великий русский
ученый Михаил Васильевич Ломоносов. И в этом состоит одна из двух целей обучения геометрии как
составной части математики в школе. Этой цели соответствует доказательная линия преподавания
геометрии. Следуя представленной рабочей программе, начиная с седьмого класса на уроках
геометрии обучающийся учится проводить доказательные рассуждения, строить логические
умозаключения, доказывать истинные утверждения и строить контр примеры к ложным, проводить
рассуждения от «противного», отличать свойства от признаков, формулировать обратные
утверждения. Ученик, овладевший искусством рассуждать, будет применять его и в окружающей
жизни.
Как писал геометр и педагог Игорь Федорович Шарыгин, «людьми, понимающими, что такое
доказательство, трудно и даже невозможно манипулировать». И в этом состоит важное
воспитательное значение изучения геометрии, присущее именно отечественной математической
школе. Вместе с тем авторы программы предостерегают учителя от излишнего формализма, особенно
в отношении начал и оснований геометрии. Французский математик Жан Дьедонне по этому поводу
высказался так: «Что касается деликатной проблемы введения «аксиом», то мне кажется, что на
первых порах нужно вообще избегать произносить само это слово. С другой же стороны, не следует
упускать ни одной возможности давать примеры логических заключений, которые куда в большей
мере, чем идея аксиом, являются истинными и единственными двигателями математического
мышления».
Второй целью изучения геометрии является использование её как инструмента при решении как
математических, так и практических задач, встречающихся в реальной жизни. Окончивший курс
геометрии школьник должен быть в состоянии определить геометрическую фигуру, описать словами
данный чертёж или рисунок, найти площадь земельного участка, рассчитать необходимую длину
оптоволоконного кабеля или требуемые размеры гаража для автомобиля. Этому соответствует вторая,
вычислительная линия в изучении геометрии в школе. Данная практическая линия является не менее
важной, чем первая. Ещё Платон предписывал, чтобы «граждане Прекрасного города ни в коем
случае не оставляли геометрию, ведь немаловажно даже побочное её применение — в военном деле
да, впрочем, и во всех науках — для лучшего их усвоения: мы ведь знаем, какая бесконечная разница
существует между человеком причастным к геометрии и непричастным». Для этого учителю
рекомендуется подбирать задачи практического характера для рассматриваемых тем, учить детей
строить математические модели реальных жизненных ситуаций, проводить вычисления и оценивать
адекватность полученного результата. Крайне важно подчёркивать связи геометрии с другими
предметами, мотивировать использовать определения геометрических фигур и понятий,
демонстрировать применение полученных умений в физике и технике. Эти связи наиболее ярко
видны в темах «Векторы», «Тригонометрические соотношения», «Метод координат» и «Теорема
Пифагора».
МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ

Согласно учебному плану в 8 классе изучается учебный курс «Геометрия», который включает
следующие основные разделы содержания: «Геометрические фигуры и их свойства», «Измерение
геометрических величин», а также «Декартовы координаты на плоскости», «Векторы», «Движения
плоскости» и «Преобразования подобия».
Учебный план предусматривает изучение геометрии на базовом уровне, исходя из 68 учебных часов
в учебном году.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА "ГЕОМЕТРИЯ"
Четырёхугольники. Параллелограмм, его признаки и свойства. Частные случаи параллелограммов
(прямоугольник, ромб, квадрат), их признаки и свойства. Трапеция, равнобокая трапеция, её свойства
и признаки. Прямоугольная трапеция.
Метод удвоения медианы. Центральная симметрия. Теорема Фалеса и теорема о пропорциональных
отрезках.
Средние линии треугольника и трапеции. Центр масс треугольника.
Подобие треугольников, коэффициент подобия. Признаки подобия треугольников. Применение
подобия при решении практических задач.
Свойства площадей геометрических фигур. Формулы для площади треугольника, параллелограмма,
ромба и трапеции. Отношение площадей подобных фигур.
Вычисление площадей треугольников и многоугольников на клетчатой бумаге.
Теорема Пифагора. Применение теоремы Пифагора при решении практических задач.
Синус, косинус, тангенс острого угла прямоугольного треугольника. Основное тригонометрическое
тождество. Тригонометрические функции углов в 30°, 45° и 60°.
Вписанные и центральные углы, угол между касательной и хордой. Углы между хордами и
секущими. Вписанные и описанные четырёхугольники. Взаимное расположение двух окружностей.
Касание окружностей. Общие касательные к двум окружностям.

ПЛАНИРУЕМЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ
Освоение учебного курса «Геометрия» должно обеспечивать достижение на уровне основного
общего образования следующих личностных, метапредметных и предметных образовательных
результатов:
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
Личностные результаты освоения программы учебного курса «Геометрия» характеризуются:
Патриотическое воспитание:
проявлением интереса к прошлому и настоящему российской математики, ценностным отношением
к достижениям российских математиков и российской математической школы, к использованию этих
достижений в других науках и прикладных сферах.
Гражданское и духовно-нравственное воспитание:
готовностью к выполнению обязанностей гражданина и реализации его прав, представлением о
математических основах функционирования различных структур, явлений, процедур гражданского
общества (выборы, опросы и пр.); готовностью к обсуждению этических проблем, связанных с
практическим применением достижений науки, осознанием важности мораль- но-этических
принципов в деятельности учёного.
Трудовое воспитание:
установкой на активное участие в решении практических задач математической направленности,
осознанием важности математического образования на протяжении всей жизни для успешной
профессиональной деятельности и развитием необходимых умений;
осознанным выбором и построением индивидуальной траектории образования и жизненных планов
с учётом личных интересов и общественных потребностей.
Эстетическое воспитание:
способностью к эмоциональному и эстетическому восприятию математических объектов, задач,
решений, рассуждений; умению видеть математические закономерности в искусстве.
Ценности научного познания:
ориентацией в деятельности на современную систему научных представлений об основных
закономерностях развития человека, природы и общества, пониманием математической науки как
сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации;
овладением языком математики и математической культурой как средством познания мира;
овладением простейшими навыками исследовательской деятельности.
Физическое воспитание, формирование культуры здоровья и эмоционального благополучия:
готовностью применять математические знания в интересах своего здоровья, ведения здорового
образа жизни (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая
активность);
сформированностью навыка рефлексии, признанием своего права на ошибку и такого же права
другого человека.
Экологическое воспитание:
ориентацией на применение математических знаний для решения задач в области сохранности
окружающей среды, планирования поступков и оценки их возможных последствий для окружающей
среды;
осознанием глобального характера экологических проблем и путей их решения.
Личностные результаты, обеспечивающие адаптацию обучающегося к изменяющимся
условиям социальной и природной среды:

— готовностью к действиям в условиях неопределённости, повышению уровня своей
компетентности через практическую деятельность, в том числе умение учиться у других людей,
приобретать в совместной деятельности новые знания, навыки и компетенции из опыта других;
— необходимостью в формировании новых знаний, в том числе формулировать идеи, понятия,
гипотезы об объектах и явлениях, в том числе ранее не известных, осознавать дефициты
собственных знаний и компетентностей, планировать своё развитие;
— способностью осознавать стрессовую ситуацию, воспринимать стрессовую ситуацию как
вызов, требующий контрмер, корректировать принимаемые решения и действия, формулировать
и оценивать риски и последствия, формировать опыт.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Метапредметные результаты освоения программы учебного курса «Геометрия» характеризуются
овладением универсальными познавательными действиями, универсальными коммуникативными
действиями и универсальными регулятивными действиями.
1) Универсальные познавательные действия обеспечивают формирование базовых когнитивных
процессов обучающихся (освоение методов познания окружающего мира; применение логических,
исследовательских операций, умений работать с информацией).
Базовые логические действия:
— выявлять и характеризовать существенные признаки математических объектов, понятий,
отношений между понятиями; формулировать определения понятий; устанавливать
существенный признак классификации, основания для обобщения и сравнения, критерии
проводимого анализа;
— воспринимать, формулировать и преобразовывать суждения: утвердительные и
отрицательные, единичные, частные и общие; условные;
— выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных,
наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и
противоречий;
— делать выводы с использованием законов логики, дедуктивных и индуктивных
умозаключений, умозаключений по аналогии;
— разбирать доказательства математических утверждений (прямые и от противного), проводить
самостоятельно несложные доказательства математических фактов, выстраивать аргументацию,
приводить примеры и контрпримеры; обосновывать собственные рассуждения;
— выбирать способ решения учебной задачи (сравнивать несколько вариантов решения,
выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).
Базовые исследовательские действия:
— использовать вопросы как исследовательский инструмент познания; формулировать вопросы,
фиксирующие противоречие, проблему, самостоятельно устанавливать искомое и данное,
формировать гипотезу, аргументировать свою позицию, мнение;
— проводить по самостоятельно составленному плану несложный эксперимент, небольшое
исследование по установлению особенностей математического объекта, зависимостей объектов
между собой;

— самостоятельно формулировать обобщения и выводы по результатам проведённого
наблюдения, исследования, оценивать достоверность полученных результатов, выводов и
обобщений;
— прогнозировать возможное развитие процесса, а также выдвигать предположения о его
развитии в новых условиях.
Работа с информацией:
— выявлять недостаточность и избыточность информации, данных, необходимых для решения
задачи;
— выбирать, анализировать, систематизировать и интерпретировать информацию различных
видов и форм представления;
— выбирать форму представления информации и иллюстрировать решаемые задачи схемами,
диаграммами, иной графикой и их комбинациями;
— оценивать надёжность информации по критериям, предложенным учителем или
сформулированным самостоятельно.
2) Универсальные коммуникативные действия обеспечивают сформированность социальных
навыков обучающихся.
Общение:
— воспринимать и формулировать суждения в соответствии с условиями и целями общения;
ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать
пояснения по ходу решения задачи, комментировать полученный результат;
— в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой
задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои суждения с
суждениями других участников диалога, обнаруживать различие и сходство позиций; в
корректной форме формулировать разногласия, свои возражения;
— представлять результаты решения задачи, эксперимента, исследования, проекта;
самостоятельно выбирать формат выступления с учётом задач презентации и особенностей
аудитории.
Сотрудничество:
— понимать и использовать преимущества командной и индивидуальной работы при решении
учебных математических задач;
— принимать цель совместной деятельности, планировать организацию совместной работы,
распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать
мнения нескольких людей;
— участвовать в групповых формах работы (обсуждения, обмен мнениями, мозговые штурмы и
др.);
— выполнять свою часть работы и координировать свои действия с другими членами команды;
— оценивать качество своего вклада в общий продукт по критериям, сформулированным
участниками взаимодействия.
3) Универсальные регулятивные действия обеспечивают формирование смысловых установок и
жизненных навыков личности.

Самоорганизация:
самостоятельно составлять план, алгоритм решения задачи (или его часть), выбирать способ
решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и
корректировать варианты решений с учётом новой информации.
Самоконтроль:
— владеть способами самопроверки, самоконтроля процесса и результата решения
математической задачи;
— предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в
деятельность на основе новых обстоятельств, найденных ошибок, выявленных трудностей;
— оценивать соответствие результата деятельности поставленной цели и условиям, объяснять
причины достижения или недостижения цели, находить ошибку, давать оценку приобретённому
опыту.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Освоение учебного курса «Геометрия» на уровне 8 класса должно обеспечивать достижение
следующих предметных образовательных результатов:
— Распознавать основные виды четырёхугольников, их элементы, пользоваться их свойствами
при решении геометрических задач.
— Применять свойства точки пересечения медиан треугольника (центра масс) в решении задач.
— Владеть понятием средней линии треугольника и трапеции, применять их свойства при
решении геометрических задач.
— Пользоваться теоремой Фалеса и теоремой о пропорциональных отрезках, применять их для
решения практических задач.
— Применять признаки подобия треугольников в решении геометрических задач.
— Пользоваться теоремой Пифагора для решения геометрических и практических задач.
— Строить математическую модель в практических задачах, самостоятельно делать чертёж и на
ходить соответствующие длины.
— Владеть понятиями синуса, косинуса и тангенса острого угла прямоугольного треугольника.
— Пользоваться этими понятия ми для решения практических задач.
— Вычислять (различными способами) площадь треугольника и площади многоугольных фигур
(пользуясь, где необходимо, калькулятором).
— Применять полученные умения в практических задачах.
— Владеть понятиями вписанного и центрального угла, использовать теоремы о вписанных
углах, углах между хордами (секущими) и угле между касательной и хордой при решении
геометрических задач.
— Владеть понятием описанного четырёхугольника, применять свойства описанного
четырёхугольника при решении задач.
— Применять полученные знания на практике — строить математические модели для задач
реальной жизни и проводить соответствующие вычисления с применением подобия и
тригонометрии (пользуясь, где необходимо, калькулятором).

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№
п/п

Наименование разделов и тем программы

Количество часов
всего

контрольные
работы

практические
работы

Дата
изучения

Виды деятельности

Виды,
формы
контроля

Электронные
(цифровые)
образовательные
ресурсы

Раздел 1. Четырёхугольники
1.1.

Параллелограмм, его признаки и свойства.

2

0

0

Изображать и находить на чертежах четырёхугольники разных видов и
их элементы;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

1.2.

Частные случаи параллелограммов (прямоугольник,
ромб, квадрат), их признаки и свойства.

3

0

0

Формулировать определения: параллелограмма, прямоугольника, ромба,
квадрата, трапеции, равнобокой трапеции, прямоугольной трапеции;

Устный
опрос;
Письменный
контроль;
тестирование;

1. dnevnik.ru
2. https://resh.edu.ru/

1.3.

Трапеция.

2

0

0

Формулировать определения: параллелограмма, прямоугольника, ромба,
квадрата, трапеции, равнобокой трапеции, прямоугольной трапеции;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

1.4.

Равнобокая и прямоугольная трапеции.

2

0

0

Доказывать и использовать при решении задач признаки и свойства:
параллелограмма, прямоугольника, ромба, квадрата, трапеции,
равнобокой трапеции, прямоугольной трапеции;

Устный
опрос;
Письменный
контроль;
тестирование;

1. dnevnik.ru
2. https://resh.edu.ru/

1.5.

Удвоение медианы.

1

0

0

Применять метод удвоения медианы треугольника;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

1.6.

Центральная симметрия

2

1

0

Использовать цифровые ресурсы для исследования свойств изучаемых
фигур;

Контрольная
работа;
Зачет;

1. dnevnik.ru
2. https://resh.edu.ru/
4. https://math8vpr.sdamgia.ru/

Итого по разделу

12

Раздел 2. Теорема Фалеса и теорема о пропорциональных отрезках, подобные треугольники
2.1.

Теорема Фалеса и теорема о пропорциональных
отрезках.

2

0

0

Проводить построения с помощью циркуля и линейки с использование
теоремы Фалеса и теоремы о пропорциональных отрезках, строить
четвёртый пропорциональный отрезок;

Устный
опрос;

1. dnevnik.ru
2. https://resh.edu.ru/

2.2.

Средняя линия треугольника.

2

0

0

Проводить построения с помощью циркуля и линейки с использование
теоремы Фалеса и теоремы о пропорциональных отрезках, строить
четвёртый пропорциональный отрезок;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/
4. https://math8vpr.sdamgia.ru/

2.3.

Трапеция, её средняя линия.

2

0

0

Проводить построения с помощью циркуля и линейки с использование
теоремы Фалеса и теоремы о пропорциональных отрезках, строить
четвёртый пропорциональный отрезок;

Устный
опрос;
Письменный
контроль;
тестирование;

1. dnevnik.ru
2. https://resh.edu.ru/
4. https://math8vpr.sdamgia.ru/

2.4.

Пропорциональные отрезки, построение четвёртого
пропорционального отрезка.

1

0

1

Проводить доказательство того, что медианы треугольника
пересекаются в одной точке, и находить связь с центром масс, находить
отношение, в котором медианы делятся точкой их пере сечения;

Практическая
работа;

1. dnevnik.ru
2. https://resh.edu.ru/

2.5..

Свойства центра масс в треугольнике.

1

0

0

Проводить доказательство того, что медианы треугольника
пересекаются в одной точке, и находить связь с центром масс, находить
отношение, в котором медианы делятся точкой их пере сечения;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

2.6.

Подобные треугольники.

2

0

0

Находить подобные треугольники на готовых чертежах с указанием
соответствующих признаков подобия;
Проводить доказательства с использованием признаков подобия.;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

2.7.

Три признака подобия треугольников.

3

0

0

Доказывать три признака подобия треугольников;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/
4. https://math8vpr.sdamgia.ru/

2.8.

Практическое применение

2

1

0

Применять полученные знания при решении геометрических и
практических задач;
Знакомиться с историей развития геометрии;

Контрольная
работа;
Зачет;
устный
опрос;

1. dnevnik.ru
4. https://math8vpr.sdamgia.ru/
5.
https://oge.sdamgia.ru/

Итого по разделу:

15

Раздел 3. Площадь. Нахождение площадей треугольников и многоугольных фигур. Площади подобных фигур
3.1.

Понятие об общей теории площади.

1

0

0

Овладевать первичными представлениями об общей теории площади
(меры), формулировать свойства площади, выяснять их наглядный
смысл;

Устный
опрос;

1. dnevnik.ru

3.2.

Формулы для площади треугольника,
параллелограмма

2

0

0

Выводить формулы площади параллелограмма, треугольника, трапеции
из формулы площади прямоугольника (квадрата);
Выводить формулы площади выпуклого четырёхугольника через
диагонали и угол между ними;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

3.3.

Отношение площадей треугольников с общим
основанием или общей высотой.

2

0

0

Находить площади подобных фигур;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

3.4.

Вычисление площадей сложных фигур через
разбиение на части и достроение.

2

0

1

Разбирать примеры использования вспомогательной площади для
решения геометрических задач;

Устный
опрос;
практическая
работа;

1. dnevnik.ru
2. https://resh.edu.ru/

3.5.

Площади фигур на клетчатой бумаге.

1

0

0

Находить площади фигур, изображённых на клетчатой бумаге,
использовать разбиение на части и достроение;

Письменный
контроль;

1. dnevnik.ru
4. https://math8vpr.sdamgia.ru/

3.6.

Площади подобных фигур.

1

0

0

Находить площади подобных фигур;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
4. https://math8vpr.sdamgia.ru/

3.7.

Вычисление площадей.

1

0

0

Вычислять площади различных многоугольных фигур;

Письменный
контроль;

1. dnevnik.ru
4. https://math8vpr.sdamgia.ru/

3.8.

Задачи с практическим содержанием.

2

0

0

Решать задачи на площадь с практическим со держанием;

Письменный
контроль;

1. dnevnik.ru
5.
https://oge.sdamgia.ru/

3.9.

Решение задач с помощью метода вспомогательной
площади

2

1

0

Разбирать примеры использования вспомогательной площади для
решения геометрических задач;

Контрольная
работа;
Зачет;

1. dnevnik.ru
5.
https://oge.sdamgia.ru/

Итого по разделу:

14

Раздел 4. Теорема Пифагора и начала тригонометрии
4.1.

Теорема Пифагора, её доказательство и применение.

2

0

0

Доказывать теорему Пифагора, использовать её в практических
вычислениях;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

4.2.

Обратная тео рема Пифагора.

1

0

0

Знакомиться с историей развития геометрии;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

4.3.

Определение тригонометрических функций острого
угла, тригонометрические соотношения в прямо
угольном треугольнике.

2

0

0

Формулировать определения тригонометрических функций острого
угла, проверять их корректность;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/
4. https://math8vpr.sdamgia.ru/

4.4.

Основное тригонометрическое тождество.

2

0

0

Выводить тригонометрические соотношения в прямоугольном
треугольнике;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

4.5.

Соотношения между сторонами в прямоугольных
треугольниках с углами в 45° и 45°; 30° и 60°

3

1

0

Исследовать соотношения между сторонами в прямоугольных
треугольниках с углами в 45° и 45°; 30° и 60°;
применять полученные знания при решении практических задач.;

Контрольная
работа;
Зачет;

1. dnevnik.ru
2. https://resh.edu.ru/
4. https://math8vpr.sdamgia.ru/

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

Итого по разделу:

10

Раздел 5. Углы в окружности. Вписанные и описанные четырехугольники. Касательные к окружности. Касание окружности.
5.1.

Вписанные и центральные углы,
угол между касательной и хордой.

2

0

0

Формулировать основные определения, связанные с углами в круге
(вписанный угол, центральный угол);

5.2.

Углы между хордами и секущими.

2

0

0

Использовать эти свойства и признаки при решении задач;
Использовать теоремы об углах между хордами(секущими) и угле между
касательной и хордой при решении геометрических задач;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

5.3.

Вписанные и описанные четырёхугольники, их
признаки и свойства.

2

0

0

Исследовать, в том числе с помощью цифровых ресурсов, вписанные и
описанные четырёхугольники, выводить их свойства и признаки;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
3. https://uchi.ru/

5.4.

Применение этих свойств при решении
геометрических задач.

2

0

0

Использовать эти свойства и признаки при решении задач;

Письменный
контроль;

1. dnevnik.ru
4. https://math8vpr.sdamgia.ru/
5.
https://oge.sdamgia.ru/

5.5.

Взаимное расположение двух окружностей.

2

0

0

Использовать эти свойства и признаки при решении задач;

Устный
опрос;
Письменный
контроль;

1. dnevnik.ru
2. https://resh.edu.ru/

5.6.

Касание окружностей.

3

1

0

Знакомство с историей развития геометрии;

Контрольная
работа;
Зачет;
устный
опрос;

1. dnevnik.ru
2. https://resh.edu.ru/
5.
https://oge.sdamgia.ru/

1

0

Решать задачи на повторение, иллюстрирующие связи между
различными частями курса;

Устный
опрос;
ВПР;

1. dnevnik.ru
4. https://math8vpr.sdamgia.ru/
5.
https://oge.sdamgia.ru/

6

2

Итого по разделу:

13

Раздел 6. Повторение, обобщение знаний.
6.1.

Повторение основных понятий и методов курсов 7 и 8
классов, обобщение знаний.

4

Итого по разделу:

4

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ

68

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ
№ Тема урока
п/п

Количество часов

Дата
Виды,
изучения формы
всего контрольные практические
контроля
работы
работы

1.

Параллелограмм, его признаки
и свойства.

1

0

0

Устный
опрос;

2.

Параллелограмм, его признаки
и свойства.

1

0

0

Устный
опрос;
Письменный
контроль;

3.

Частные случаи
параллелограммов
(прямоугольник, ромб,
квадрат), их признаки
и свойства.

1

0

0

Устный
опрос;
Письменный
контроль;

4.

Частные случаи
параллелограммов
(прямоугольник, ромб,
квадрат), их признаки
и свойства.

1

0

0

Устный
опрос;
Письменный
контроль;

5.

Частные случаи
параллелограммов
(прямоугольник, ромб,
квадрат), их признаки
и свойства.

1

0

0

Устный
опрос;
Письменный
контроль;

6.

Трапеция.

1

0

0

Устный
опрос;

7.

Трапеция.

1

0

0

Устный
опрос;
Письменный
контроль;

8.

Равнобокая и прямоугольная
трапеции.

1

0

0

Устный
опрос;

9.

Равнобокая и прямоугольная
трапеции.

1

0

0

Устный
опрос;
Письменный
контроль;

10. Удвоение медианы.

1

0

0

Устный
опрос;
Письменный
контроль;

11. Центральная симметрия

1

0

0

Устный
опрос;
зачет;

12. Контрольная работа № 1 по
теме "Четырехугольники"

1

1

0

Контрольная
работа;

13. Теорема Фалеса и теорема о
пропорциональных отрезках.

1

0

0

Устный
опрос;

14. Теорема Фалеса и теорема о
пропорциональных отрезках.

1

0

0

Устный
опрос;
Письменный
контроль;

15. Средняя линия треугольника.

1

0

0

Устный
опрос;

16. Средняя линия треугольника.

1

0

0

Устный
опрос;
Письменный
контроль;

17. Трапеция, её средняя линия.

1

0

0

Устный
опрос;

18. Трапеция, её средняя линия.

1

0

0

Устный
опрос;
Письменный
контроль;

19. Пропорциональные отрезки,
построение четвёртого
пропорционального отрезка.

1

0

1

Практическая
работа;

20. Свойства центра масс в
треугольнике.

1

0

0

Устный
опрос;

21. Подобные треугольники.

1

0

0

Устный
опрос;

22. Подобные треугольники.

1

0

0

Устный
опрос;
Письменный
контроль;

23. Три признака подобия
треугольников.

1

0

0

Устный
опрос;
Письменный
контроль;

24. Три признака подобия
треугольников.

1

0

0

Устный
опрос;
Письменный
контроль;

25. Три признака подобия
треугольников.

1

0

0

Устный
опрос;
Письменный
контроль;

26. Практическое применение

1

0

0

Письменный
контроль;
зачет;

27. Контрольная работа № 2 по
теме "Теорема Фалеса и
теорема о пропорциональных
отрезках, подобные
треугольники".

1

1

0

Контрольная
работа;

28. Понятие об общей теории
площади.

1

0

0

Устный
опрос;

29. Формулы для площади
1
треугольника, параллелограмма

0

0

Устный
опрос;
Письменный
контроль;

30. Формулы для площади
1
треугольника, параллелограмма

0

0

Устный
опрос;
Письменный
контроль;

31. Отношение площадей
1
треугольников с общим
основанием или общей высотой

0

0

Устный
опрос;
Письменный
контроль;

32. Отношение площадей
1
треугольников с общим
основанием или общей высотой

0

0

Устный
опрос;
Письменный
контроль;

33. Вычисление площадей
сложных фигур через
разбиение на части и
достроение.

1

0

0

Письменный
контроль;

34. Вычисление площадей
сложных фигур через
разбиение на части и
достроение.

1

0

1

Практическая
работа;

35. Площади фигур на клетчатой
бумаге.

1

0

0

Письменный
контроль;

36. Площади подобных фигур.

1

0

0

Устный
опрос;
Письменный
контроль;

37. Вычисление площадей.

1

0

0

Устный
опрос;
Письменный
контроль;

38. Задачи с практическим
содержанием.

1

0

0

Письменный
контроль;

39. Задачи с практическим
содержанием.

1

0

0

Письменный
контроль;
зачет;

40. Решение задач с помощью
метода вспомогательной
площади

1

0

0

Письменный
контроль;

41. Контрольная работа № 3 по
теме "Площадь. Нахождение
площадей треугольников и
многоугольных фигур.
Площади подобных фигур".

1

1

0

Контрольная
работа;

42. Теорема Пифагора, её
доказательство и применение.

1

0

0

Устный
опрос;
Письменный
контроль;

43. Теорема Пифагора, её
доказательство и применение.

1

0

0

Устный
опрос;
Письменный
контроль;

1

0

0

Устный
опрос;
Письменный
контроль;

45. Определение
1
тригонометрических функций
острого угла,
тригонометрические
соотношения в прямо угольном
треугольнике.

0

0

Устный
опрос;
Письменный
контроль;

46. Определение
1
тригонометрических функций
острого угла,
тригонометрические
соотношения в прямо угольном
треугольнике.

0

0

Устный
опрос;
Письменный
контроль;

47. Основное тригонометрическое
тождество.

1

0

0

Устный
опрос;
Письменный
контроль;

48. Основное тригонометрическое
тождество.

1

0

0

Устный
опрос;
Письменный
контроль;

49. Соотношения между
сторонами в прямоугольных
треугольниках с углами в 45° и
45°; 30° и 60°

1

0

0

Устный
опрос;
Письменный
контроль;

50. Соотношения между
сторонами в прямоугольных
треугольниках с углами в 45° и
45°; 30° и 60°

1

0

0

Устный
опрос;
зачет;

51. Контрольная работа № 4 по
теме "Терема Пифагора и
начала тригонометрии".

1

1

0

Контрольная
работа;

52. Вписанные и центральные
1
углы,угол между касательной и
хордой.

0

0

Устный
опрос;
Письменный
контроль;

44.

Обратная тео рема Пифагора.

53. Вписанные и центральные
1
углы,угол между касательной и
хордой.

0

0

Устный
опрос;
Письменный
контроль;

54. Углы между хордами и
секущими.

1

0

0

Устный
опрос;
Письменный
контроль;

55. Углы между хордами и
секущими.

1

0

0

Устный
опрос;
Письменный
контроль;

56. Вписанные и описанные
четырёхугольники, их
признаки и свойства.

1

0

0

Устный
опрос;
Письменный
контроль;

57. Вписанные и описанные
четырёхугольники, их
признаки и свойства.

1

0

0

Устный
опрос;
Письменный
контроль;

58. Применение этих свойств при 1
решении геометрических задач.

0

0

Устный
опрос;
Письменный
контроль;

59. Применение этих свойств при 1
решении геометрических задач.

0

0

Устный
опрос;
Письменный
контроль;

60. Взаимное расположение
двух окружностей.

1

0

0

Устный
опрос;
Письменный
контроль;

61. Взаимное расположение
двух окружностей.

1

0

0

Устный
опрос;
Письменный
контроль;

62. Касание окружностей.

1

0

0

Устный
опрос;

63. Касание окружностей.

1

0

0

Письменный
контроль;
зачет;

64. Контрольная работа № 5 по
теме "Углы в окружности.
Вписанные и описанные
четырехугольники.
Касательные к окружности.
Касание окружностей".

1

1

0

Контрольная
работа;

65. Повторение основных понятий 1
и методов курсов 7 и 8 классов,
обобщение знаний.

0

0

Устный
опрос;
Письменный
контроль;

66. Повторение основных понятий 1
и методов курсов 7 и 8 классов,
обобщение знаний.

0

0

Устный
опрос;
Письменный
контроль;

67. Диагностическая работа по
геометрии за курс 8 класса

1

1

0

ВПР;

68. Повторение, обобщение
знаний.

1

0

0

Устный
опрос;

ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ
ПО ПРОГРАММЕ

68

6

2

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА
Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и другие, Геометрия 7–9 класс, Акционерное общество
"Издательство "Просвещение";
Введите свой вариант:
МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ
1. Примерная рабочая программа основного общего образования предмета «Математика» базовый

уровень
Одобрена решением федерального учебно-методического объединения по общему образованию,
протокол 3/21 от 27.09.2021 г.
2. Геометрия, Методические рекомендации, 8 класс, Учебное пособие для общеобразовательных

организаций, Атанасян Л.С., Бутузов В.Ф., Глазков Ю.А., 2016
3. Дополнительные главы к учебнику геометрии 7-9 класс Атанасян Л. С. : http://school-

collection.edu.ru/catalog/rubr/7ae3b7e4-0a01-01b2-01d4-8209d17a43ff/
ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ
1. dnevnik.ru
2. https://resh.edu.ru/
3. https://uchi.ru/
4. https://math8-vpr.sdamgia.ru/
5. https://oge.sdamgia.ru/

МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
УЧЕБНОЕ ОБОРУДОВАНИЕ
Справочные таблицы
ОБОРУДОВАНИЕ ДЛЯ ПРОВЕДЕНИЯ ЛАБОРАТОРНЫХ И ПРАКТИЧЕСКИХ РАБОТ
Линейка, карандаш, циркуль, мультимедийный проектор


Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

ВНИМАНИЕ!

Срок действия лицензии на использования программного обеспечения окончен 31.03.2023.
Для получения информации с сайта свяжитесь с Администрацией образовательной организации по телефону 8(35361)32686

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».